FrontPage

makeSEA Analysis - Printing Conductive PLA from Proto Pasta with Replicator 2x - Resistance

Printing Conductive PLA from ProtoPasta with Replicator 2X - Resisitance

After suceeding with printing magnetic PLA, it wasn't a big problem to print conductive PLA. This material behaves very similar as normal PLA. With additional cooling and lubrication, it is possible to print PLA with 205°C nozzle and 60°C build platform on Capton. The material seems a bit more brittle compared with regular PLA, wich doesn't matter because it's conductivity is my primary interest.

In order to measure conductivity (resp. resistivity), I created this design:

The design is a single connected wire with various shapes. Cross-sections are ranging from 1 mm^2 to 5 mm^2, the length of individual sections is 20 mm. In total 16 different resistors wired in series, with larger pads for contacting the measuring probes. The circuit scheme looks like this:

For 3d printing on the Replicator 2x I was using the original Makerbot Slicer Software and Simplify3D. In order to have maximum cunductivity I set infill to 95% (could also do 100%, but I was fearing a messy overextruded print, if parameters and filament are not perfect). As isolator I was using regular black PLA. The results from both slicers were similar.

For measuring the resistance, I used two different methods. 

 

The regular probes have only a small contact-area (almost only a point), and due to the relative high resistance of the PLA I expected to see a relevant difference compared with larger contact areas. For better contact I was using aluminium foil, which I pressed with my fingers to the PLA surface. I know, my body is also a resistor, and it could influence the results, but my own finger-resistance was in the range of Megaohms - not relevant, if result is kOhms ... 

The chart shows the results from two printed models (one was sliced with original Makerbot software, the other was sliced with Simplify3D, both with similar parameters). And it shows measurements from 2 different contact types (explaned above). The measured values range from 1 kOhm to 10 kOhm for the horizontal oriented wires. Using cross-section area and conductor lenght, the specific resistivity could be calculated. Even dough my measurement methods were not very elaborate and accurate, it's clearly visible, that the printing orientation has a big influence: the resistivity horizontally along the slicing plane is much lower than the resistivity vertically across the slicing planes. Also visible the effect of contact area from the probes: for low Ohm wires the contact area can influence the resistance more than 50%, whereas for high Ohm conductors, it's less relevant.

The averaged values are in the range of the official Proto Pasta. The resistivity along z-axis probably depends also on the layer thickness (my prints have 0.1 mm layers).

Resistivity Horizontal 0.27 kOhm*mm official proto pasta: 30 Ohm*cm
Resistivity Vertical 1.88 kOhm*mm official proto pasta: 115 Ohm*cm

Conclusions:

1) Conductive PLA is useful for low-power applications (e.g. powering an efficient LED with a few mA)

2) Conductive PLA is difficult to use for "higher-power" applications (e.g. a microcontroller consuming more than 20 mA). Up to 20 mA the main problem isn't the resistance of the wire itself, because this can be designed with a large cross-section area. Problem is the contact area for a battery or the pin of the IC or any other current consuming device.

3) A bright flashlight with 1 W consumes roughly 300 mA. Assuming a minimal wire length of 20 mm. We don't want to loose more then 0.5 W over this wire. Let's calculate: R = P / I^2, and Area = Resistivity * Length / Resistance => Area needs to be more than 900 mm^2, if the wires have a square cross-section, the wire witdh needs to be 30 mm. In order to avoid additional losses the contact area from battery and LED has to cover the full cross-section. No useful application!

4) Avoid vertical oriented wires: having a closer look at the resistivities 14, 15, and 16 in the chart above, there is a significant difference between the prints sliced by Makerbot software and S3D. When inspecting the printed object, I realized that one of the higher layers from the S3D-print has a strange inconsistency (maybe underextrusion, or ambient temperature-change). Anyway in 3d-printing it's more likely that something goes wrong along the z-axis compared to the xy-axis, and the impact on the resistance can be huge.

3D-Model:

- STL: Conductor, Isolator

- SETP

- F3D

While I was wating for the conductive PLA beeing delivered, I already started creating some desigs for testing. I was also interested to see, how the material can be used for printing a coil:

I've not yet printed it, because I expect inferior usability due to the high resistance. Here are some numbers:

Outer Diameter 50 mm
Inner Diameter 20 mm
Height 10 mm
Cross-Section 0.49 mm^2
Resistivity 0.3 kOhm * mm
Wire Length 8'000 mm
Turns 80  
Resistance 4'898 kOhm
Current 0.001 mA
Voltage 5 V
Inductance 180 uH

(using http://coil32.net/online-calculators/multilayer-coil-calculator.html for inductance calculation)

In order to create a small magnetic field, there needs to be a certain amount of current. However the resistance is incredible high (5 Mega Ohm), and with 5 Volts there is only 1 Microampere Current. This design is not usefult as a magnetic actor! Probably there is no design, where the conductive PLA from Proto Pasta can be used as actor (motor). The resistivity would need to be MUCH smaller!

Maybe there is an application as sensor? Maybe I should give it a try to print this design at some time.

Conductive PLA sourced from:

Proto-pasta logo

0 Attachments
15352 Views
Average (0 Votes)
Comments

Check Out the makeSEA Mash Market® for a collection of useful designs related to this Wiki article.

Compel your audience with

Catapult

The fastest way to publish user-generated content and collaborate using Magic Leap spatial computing.

It's time to change the way you think about communicating, teaching, and design.

Time to change the way you capture and curate evolving ideas.

Use makeSEA + Catapult and Magic Leap spatial collaboration to share your vision and inspire your audience with content that you create.


Catapult your vision, in real-time, together.

 

 

It's as easy as a social media post:

  1. Create an account, start a project and upload your content from most any content source*.

  2. Launch Catapult on your Magic Leap compatible device.

  3. Share and collaborate using your own spatial content, with others together in real-time, in the same physical space and remotely.

 

Get the full details Click Here

 

Enabling augmented reality (AR), mixed reality (XR),
and spatial computing for everyday use.SM

 

for Architecture
& Design
Magic Leap &
AR/Mixed Reality
Content Publishing
for Education
& Making

 

for Construction
for Trade Shows
& Exhibits
for Retail
& Branding

*Catapult requires assets saved in GLB or MP4 (standard 720p, 1080p, or 3K 360˚ spherical surround format), or a makeSCENE package for live over-the-air collaboration with shared spatial content.  See the how-to guide for hints and instructions on how to easily export or convert content from most 3D authoring tools and platforms.

Free makeSEA Account & Catapult App

makeSEA user accounts and Catapult for spatial computing have always been free. Covid-19 is changing the way we work, collaborate, interact and learn forever. It is accelerating the shift to...

Where Do We Go from Here?

I think we all have to accept that part of today's normal will become the "new" normal. At any time, another pandemic or other crisis can and probably will affect the way we teach, learn,...

Doing our part to help with local PPE

Doing our part to help with local PPE needs using hashtag # makeSEA hashtag # Catapult and hashtag # MagicLeap for rapid iteration and visualization on 3D printed...

Additive Manufacturing, AR and COVID-19

The global manufacturing industry is reeling from the effects of the COVID-19 outbreak. The mega-factories we rely on are experiencing shortages of personnel and raw materials for production....

Adapting to the New Normal

We are entering a new era. Whether you are a business, in the education field or just looking for ways to communicate safely, we are being forced to accept that we all need to find ways to...

Feeling Like a Fish Out of Water

During this time of uncertainty, we're all feeling a little like a fish out of water. Looking for new ways to conduct business, educate and train, share information and collaborate with...

Look to the Future with Spatial Computing

Now more than ever we need to think about keeping organizations running smoothly in a crisis. We are all being challenged and forced to look at the future. Businesses, educational...

Use Catapult for Forensic Visualization

What can you do with makeSEA and Catapult for Magic Leap? How about forensic visualization. Imagine being able to securely convert and deliver forensic scans data to full-scale immersive...

makeSEA is More

makeSEA is busy printing masks to help with the Coronavirus crisis. makeSEA's core value starting out was to support independent 3D designers, maker spaces and education with a platform that...

Change How You Communicate and Collaborate

It's time to change the way you think about collaborating, communicating, teaching, and design. Time to change the way you capture and curate evolving ideas. Use https://makeSEA.com + ...

makeSEA Catapult App launched on Magic Leap World

It's time to change the way you think about communicating, teaching, and design. Time to change the way you capture and curate evolving ideas. Use makeSEA + Catapult and Magic Leap...

makeSEA at Construct 3D Conference

Look for us at the Construct 3D Conference between February 13-16 at Rice University in Houston, Texas. We’ll be joining an awesome list of sponsors and exhibitors and hope to see many of you...

Positive ROI with the Use of Mixed Reality

Mixed Reality (MR) is an umbrella term given to computer-generated environments that either merge the physical and virtual worlds (AR) or create an entirely immersive experience (VR) for the...

How Technology is Impacting Education...In a Good Way

  Today’s students have been raised on digital devices—digital engagement is a part of their DNA. It seems like a “no-brainer “ that instructors, especially at the high school and...

Easy Augmented Reality

makesea for Augmented Reality (AR) is a SaaS that supports a number of verticals and at the core is a content management platform that can be dressed for any experience from consumer branding...

AR and 3D Printing Should be Part of Advanced Curriculums

makeSEA for Education provides a safe, secure environment for students to collaborate and iterate on 3D designs and projects. Our SaaS platform also offers a way to get started with Augmented...

Using AR for EDU

      It’s no secret that keeping the attention of today’s students is harder than ever. From grade school to college level, these students have been raised with...

Some AR Stats to Think About

Download the infographic . If you think Augmented Reality/Mixed Reality is still just something to think about, think again! This technology is being used in everyday businesses...

A picture is worth a thousand words

Sometimes a picture IS worth a thousand words. makeSEA can get your firm AR ready. Have you considered how Augmented reality (AR) could help your architecture or construction firm? ...

makeSEA selects Magic Leap as headset of choice

  An estimated 75% of adults use glasses or some sort of vision correction, according to the Vision Council of America. But this is just one of the reasons makeSEA has chosen Magic...