makeSEA Knowledge - Printing Flex Profill Filament

Tags: flex profill

Printing “Flex ProFill” Filament


There are many different types of filament-materials available for 3d-printing, and the variety is extended continuously. In particular I wanted to find a material, which is flexible and strong. I’ve ordered a bunch of sample filaments from various online stores. The effort to get familiar with a new material is very high, and I wasn’t yet able to try all my samples. NinjaFlex is quite popular, and there are many reviews available (e.g. It also was easy to print in my case. In particular I had a closer look to another Filament called “Flex ProFill”. Compared with NinjaFlex the ProFill appears a bit less flexible, but much stronger, when you try to tear the raw filament apart (manual test).

Material Source:

I decided to buy the 1.75 mm filament, because I intended to print it on the Makerbot R2x, which has the feeder motors on the print-head. A short distance between feeder and extruder nozzle makes it simpler to control the process. The heavy head is a disadvantage for printing fast and accurately, but flexible materials have to be printed slowly in general.

My local supplier of the Flex Profill provides print settings on his webpage. I guess these settings work well, however I found my own setup (which also work well). In particular I played with a lower extrusion temperature, in order to reduce warping and adhesion problems.

  • Default printing Speed: 1’500 mm/min
  • Extruder Temperature: 210°C
  • Heated Build Platform: 70°C
  • Shell: 2 outlines
  • Layer: 0.1 mm
  • Skirt / Brim: 6 Outlines
  • PVA Coated Build Platform

Tractor Tyre

The material feels like rubber, ideal to print a durable tyre. I’ve designed a parametric tractor tyre. Width, diameter, thickness, profile depth and angle are adjustable.

  • Tyre.f3d
  • Tyre.step
  • Tyre_40mm.stl
  • Tyre_70mm.stl
  • Tyre_80mm.stl

Printing time for the 70 mm rim size was almost 24 hours. 45° overhanging structures were only a problem at the corners of the tyre profile.

The 3d-printed tyre with 70 mm rim is big enough for a medium size RC-car. It feels not as squishy as a regular RC-car tyre, but it’s possible to bend and deform it by hand without damaging the tyre.

Even though the platform was coated with PVA, the tyre came off after a while. This didn’t ruin the printed tyre, because it happened only very late, and very slowly. The reason is certainly the material shrinkage and the “huge” size of the object, but also the degrading of the PVA coat at 70°C during 24 hours.

Nevertheless a “brim” is recommended to improve adhesion, when printing large objects. Smaller (lower) objects don’t need a brim.

The squishiness can be influenced by the infill. I recommend 15% hexagonal infill. Too little infill can cause problems with the covering top layers. Maybe 50% “catfill” could useful? In order to be squishy the internal structures shouldn’t be too rigid, no truss - like “catfill”.
I’ve also printed a smaller tyre (40 mm rim). Perfect adhesion until the end.

Conclusion: A tyre is relative simple to design and print. Probably a tyre with a smaller profile for a paved streets would be even simpler than the tractor tyre. The material appears very strong, but tests need to be done where a tyre is used on a vehicle.

Simple Sealing Ring

This ring has a shape almost like a torus. In order to prevent 45° overhanging structures I’ve designed the ring with an octagonal cross-section. Printing on the PVA coated platform is very simple it doesn’t even need a brim.

The resulting ring should be useful as a sealing maybe as a replacement for a broken tap sealing. The next pictures show, how the material can be bent or stretched. Actually I overstretched it a lot, and it needed quite some force (I couldn’t do this test without the help of pliers).

It didn’t break, but it also did not go back to it’s original shape. The picture below shows control and treated objects side-by-side.

In order to test the functionality of a seal in real live, I’ve designed a coupler for the garden hose. My design is compatible with the Gardena system. I’ve printed the coupler itself with PETG, and the sealing ring was done with the actual “Flex ProFill”. The ring can be slead over the coupler with some stretching (no risk of permanent deformation).

In my test the coupler doesn’t have an exit for the water - like a cork on a bottle. The result is surprising:

(see video)

With approx. 25 PSI water pressure, the sealing ring did a very good job. However the “cork” was not 100% water-tight. The remaining air in the hose and the water were causing bubbles and a funny sound. The PETG did withstand the pressure, but there were obviously small holes in the structure. Walls are 2.4 mm thick (6 outlines), Bottom and top 8 x 0.15 mm, infill 50% (no matter for my design, because the test-cork is hollow). The actual print was done with 130% material flow (over-extruded), because I wanted to be sure, that the shell layers were printed really compact. Nevertheless the amount of lost water was not big. Applications for the garden are well doable.

The shared design files below are not the cork-version, but only they have a 9 mm exit for the water, and it shouldn’t be too difficult to integrate it into another design.

  • Gardena Hose Coupler.f3d
  • Gardena Hose Coupler.step
  • Gardena Hose Coupler.stl
  • Gardena Hose Coupler Sealing Ring.stl

Complex Shaped Sealing Ring

Below a model of a gear-pump. Unfortunately the pump didn’t really work, because too much water passes between the gears and the wall of the housing. However the sealing ring works really well. When connecting the garden hose and “flooding” the case with water at 25 PSI, the water exits everywhere but not at the sealing.


This example clearly demonstrates to power of 3d-printing: a common rubber-band probably would not work - it would jump out of the groove before the lid could be closed. 3D-printing this special shaped sealing ring is very simple and takes only a few minutes.

PVA Coated Build Platform

I’m using a carbon fiber plate, but the coating probably work also on glass. Apply a bit of PVA glue (regular white/wood glue), dissolve it with some water (I have my mix of water+alcohol, which I’m also using for cleaning), evenly mix and distribute it with a brush, heat-up the platform to 70°C (it accelerates the drying). Wait until the white shimmer disappears.

The coated surface can be used several times, unless it comes off when removing the printed object with brute force while it’s not cooled down to room temperature. The coating also works for printing many other types of material (in particular Nylon). Adhesion is best, when the PVA just dried, and after a couple of hours/days the adhesion decreases.

Removing the coat is simple and “clean”: make it a little wet, and pull on a “corner”. The pictures look disgusting, but the coat comes off the platform almost 100% in one piece (depending on the glue and the amount of water). You need to play, but it doesn’t take long until the printer is ready for another material.


0 Attachments
Average (0 Votes)
No comments yet. Please sign in to comment.

Check Out the makeSEA Mash Market® for a collection of useful designs related to this Wiki article.

Enabling AR, mixed reality and 3D content for everyday use.SM


for Architecture
& Design
Magic Leap &
AR/Mixed Reality
Content Publishing
for Education
& Making


for Construction
for Trade Shows
& Exhibits
for Retail
& Branding

Some AR Stats to Think About

Download the infographic . If you think Augmented Reality/Mixed Reality is still just something to think about, think again! This technology is being used in everyday businesses...

makeSEA selects Magic Leap as headset of choice

  An estimated 75% of adults use glasses or some sort of vision correction, according to the Vision Council of America. But this is just one of the reasons makeSEA has chosen Magic...

Collaborate with makeSEA Curate™ App

Legitimate use cases for Augmented Reality (AR) are many and varied. It can be used in so many industries to assist and improve workflow processes. AR gives an individual or a group the...

Augmented Reality for Manufacturing

Manufacturing may well be the vertical where Augmented Reality (AR) is currently being used and accepted most frequently. That’s not surprising if you consider that so much of the...

Augmented Reality for Sales & Marketing

In the last blog we talked about the use of Augmented Reality (AR) and the real-world use cases, primarily pertaining to service related industries and industries with a service component, such...

Augmented Reality Improves Business Processes

In past blog posts we’ve talked about real-world uses for Augmented Reality (AR). The thing is, too many business people are still under the impression that AR use cases are some...

This Changes Everything

VR (Virtual Reality), AR (Augmented Reality), mixed reality, spatial computing—this is technology that is changing the way we do business. Companies are rapidly adapting to and using these...

AR as a Reference and Training Tool

Augmented Reality (AR) is poised to bring dramatic changes to everyday life, so its not hard to imagine that it is already impacting the workplace. AR technology dates back to the mid-1990s,...

AR and Your Trade Show Booth

No matter what industry you are in, your trade show booth and the image you present is your show piece and influences the perception others have of your company and brand. In the trade...

Architecture, Design and AR

Recently I made a move to another state and in the process decided to have a small house built rather than rent or buy something I would need to put significant money into immediately. The...

Enhance Your 3D Print Program

As 3D printing is evolving it is pretty much mainstream coursework in institutions of higher learning. The departments of engineering, architecture, fine arts, and medical have incorporated...

Embrace Change

Change can sometimes be difficult and a little intimidating but the use of augmented reality as part of your marketing, sales and even training efforts is rapidly becoming main stream. One...

This is why we share our designs!

We recently heard from Manes Cabanas, Associate Professor at the Universidad de Oviedo in Spain. He has used the makeSEA brushless motor as a teaching tool for his students in Electrical...

makeSEA R&D

makeSEA is more than a service, it's a platform for Digital Transformation. Here's a hint at whats coming . . .

makeSEA Proudly Sponsors Construct3D 2018 Conference at Georgia Tech

We are thrilled to be proud sponsors at the 2018 Construct3D conference for 3D Printing in Education at GATech in Atlanta this coming weekend! Come visit and see me, Chris Stavros, Chief Maker...

Is 3D printing good or bad for construction jobs?

(Quartz/Mike Murphy) Now You can now 3D-print a house in under a day   I love this discussion thread  about the recent article by Mike Murphy at QUARTZ  on 3D...

Move over Moore . . . there's a new law in town!

illustration by ZOHAR LAZAR According to this article by Clive Thompson of WIRED Magazine , there is a new law in town:  Lass' Law.  Moore's law has accurately predicted...

3D Printing and the Olympics

Whether you strive for Olympic gold downhill skiing, or couch-surfing, it’s easy to understand why 3D printing makes a difference - remember, this technology is on it’s way to your living...

Christoph is at it AGAIN!

What can we say but INCREDIBLE and AMAZING!  Check out the latest 3D printable projects by makeSEA Chief Designer Christoph Laimer - click here to see more


At makeSEA we're all about innovation. Through the process of change, alteration, transformation and metamorphosis, using new methods and creativity, that new or improved products can evolve from...