makeSEA Classic Projects

Back

Machine Vise


This is a quite robust 3d-printable machine vise. It's 100% 3d-printed - no screw or other piece of hardware is needed to hold the individual pieces together. Pieces clip and snap together.

It's a demonstration that it is very important to consider forces and material properties already when designing a mechanical object. Hints about proper design are presented in my video:

The video also includes explanations of how to assemble this vise.

For 3d-printing it's recommended to print 3 shell layers. 35% infill is sufficient. All the forces for clamping a workpiece are only active at the outer surface - more infill doesn't make the vise more robust. Layer height is 0.15 mm (maybe screws are better printed with 0.1mm layers). No support material needed. Printed with 0.4 mm nozzle.

If there are difficulties to print the threaded rods vertically, I've designed a version of the sliding jaw with horizontally printed rods: http://www.thingiverse.com/thing:2123529

Overview and Background

Very often people just try to 3d-print common mechanical objects. But the traditional shape of these objects is often not 3d-printable, and if an object was successfully printed, it maybe does not work, or it is not strong enough.

For mechanical objects it is therefore required to adapt the design depending on its future use. If you're familiar with some CAD-tool, and if your creating designs for 3d-printing. I recommend to think about the special material properties of 3d-printed parts.

Lesson Plan and Activity

Actually I recommend to watch my video, above

With this knowledge you will be able to design better 3d-printable mechanical objects: c-clamp, pliers, stands, geared-transmission, camera-mounts, ...

Materials Needed

A spool of PLA, or PETG, a 3d-printer, some CAD-Tool (Fusion 360, or Tinkercad, ...)



Detailed Building Instruction

Assembly Steps

Thanks to http://www.thingiverse.com/greenlig for this illustration:
Average (0 Votes)


No comments yet. Please sign in to comment.

SHARED ASSETS

These are files shared by this makeSEA profile.  You must be signed in to access most assets.  Some collections may require special permission or purchase via the Mash Market to become available here.

 

Folders
Name  
Thumbnail
Subfolders: Halbach Images
Access from Desktop
Thumbnail
Subfolders: Turbillon images
Access from Desktop
Thumbnail
Subfolders: Machine Vise Images
Access from Desktop
Thumbnail
Subfolders: OctOClock Images, OctOClock Images2
Access from Desktop
Thumbnail
Subfolders: Slew parametric bearing images
Access from Desktop
Thumbnail Access from Desktop
Thumbnail
Subfolders: Spool Images
Access from Desktop
— 20 Items per Page
Showing 7 results.
Documents
There are no documents or media files in this folder.
Action Downloads Name Size
There are no documents or media files in this folder.
There are no documents or media files in this folder.

About Me

Christoph Laimer

 

makeSEA Chief 3D Designer

Award winning 3D designer, Christoph is responsible for some of the most innovative designs, observations, and insights available on the makeSEA registry. Hailing from Zurich, Switzerland, a stronghold for master tradesmen and creatives since the 12th century, Christoph couples his formal expertise in electrical engineering and software development with his passion for mechanics to design 3D printable mechanical clocks, motors, and a variety of scalable components and usable objects. He is also a primary contributor to the makeSEA wiki and blog, where he records invaluable results and observations from his 3D printing experiments, which are used as a reference manual for other 3D print engineers and enthusiasts.

After completing the masters degree in Electrical Engineering at the ETH, Zurich, Christoph worked as a software developer - initially in semiconductor industries, and later in life science. Designing and creating innovative software, interacting with customers, and managing a small team of software developers was his passion.

Always taken with mechanical constructions, Christoph designed and experimented with RC model airplanes. With the advent of 3d-printing, Christoph found a new type of creativity, focusing on mechanical watches. His imagination and 3D printing allow him to transform his "crazy" ideas into reality. His belief that future watches will be highly customisable - not only engraving, ornaments or decoration, but real complex objects combining mechanics and electronics - has led him to explore and push the boundaries for 3D printing, combining advanced mechanics and pleasing aesthetics in the process.

Christoph Laimer named as Winner of the Share Prize, 2016

Recently, Christoph was awarded the top prize for his 3DPrinted Tourbillon Watch at the Piemonte Share Festival in May, 2016. The Share festival is an international competition that promotes and supports contemporary art in the digital age. Christoph was awarded the top prize for his 3DPrinted Tourbillon Watch.

This attractive domestic timepiece adds flair to any living room, and is a functional Swiss clock that is almost entirely 3D printed. The Watch is open-source, so every working piece of it is open for inspection, on the web and in the home as well.